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ABSTRACT

Using linear wave theory, the rate at which energy is converted into internal gravity waves by the interaction
of the barotropic tide with topography in an ocean is calculated. Bell’s formula for the conversion rate is extended
to the case of an ocean of finite depth H with weak two-dimensional topography h(x, y) and arbitrary buoyancy
frequency N(z). Approximate solutions are computed using the WKB method, which reduce to the previous
result for an ocean of infinite depth with constant stratification. The conversion rate for a finite-depth ocean can
be substantially smaller than the infinite-ocean prediction when the length scale of the topography is of the same
order as the horizontal wavelength of the internal tide. The conversion rate for two-dimensional Gaussian
seamounts is calculated. Using observed statistics for the distribution of seamounts, the authors estimate 1/4
GW of conversion for a square of ocean floor of side 1000 km.

1. Introduction

The tidal sloshing of a stratified ocean over a bumpy
bottom transfers energy from the spin of the earth into
internal gravity waves. The resulting gravity waves are
known as the ‘‘internal tide’’ [for a review, see Wunsch
(1975)]. This conversion radiatively damps the baro-
tropic tide. The tidal-conversion process, illustrated in
Fig. 1, may make an important contribution to mixing
the deep ocean and catalyzing the thermohaline circu-
lation (Munk and Wunsch 1998). St. Laurent and Garrett
(2001, submitted to J. Phys. Oceanogr.) discuss the pro-
cesses that might degrade the internal tide into small-
scale mixing.

Following the early papers of Rattray (1960), Cox
and Sandstrom (1962), Baines (1973), and Bell
(1975a,b), the problem of the internal tide received only
episodic attention. But the observations of Ledwell et
al. (2000) of elevated mixing rates over rough topog-
raphy, and the global tidal analysis of Egbert and Ray
(2000), have sparked recent interest in the role of the
internal tide in ocean mixing. Numerical investigations
have used both idealized (Holloway and Merrifield
1999; Khatiwala 2001, submitted to Deep-Sea Res.; Li
2001, submitted to J. Mar Res.) and realistic (Kang et
al. 2000; Cummins et al. 2001; Merrifield and Holloway
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pography.

The most useful analytic estimate of the conversion
rate is that of Bell (1975a), which assumes inter alia (i)
that the ‘‘fluid has unlimited vertical extent,’’ (ii) that
the topography varies only in one direction (x), and (iii)
that the buoyancy frequency N is uniform. Bell (1975b)
removed the second restriction, and gave an estimate
for tidal conversion by two-dimensional topography.
Our goal is to remove all of these restrictions and cal-
culate the conversion rate associated with two-dimen-
sional topography, h(x, y), in an ocean of finite depth
with buoyancy frequency N(z). However we do continue
to follow Bell in assuming that the topographic slopes
are much less than the slope of a tidal beam and that
the topographic height is much less than both the vertical
wavelength of the internal tide and the depth of the
ocean. This small amplitude assumption means that the
bottom boundary condition can be applied approxi-
mately at a flat surface, z 5 2H, rather than at the
actual bottom z 5 2H 1 h.

The barotropic tidal velocity is represented as

U 5 [U cos(v t), V cos(v t 1 x)].0 0 0 0 (1)

Bell’s (1975a) formula for the conversion rate with in-
finite depth and hy 5 0 is

`2f dk02C 5 r U LN 1 2 kh̃(k)h̃*(k) (watts).Bell 0 0 B E2! v 2p0 0

(2)
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FIG. 1. The periodically reversing barotropic tide in (1) flows over a bottom bump and radiates
gravity waves into a stably stratified ocean with buoyancy frequency N. The illustration above is
obtained using Bell’s (1975a) solution.

In (2), NB [ N(2H) is the buoyancy frequency at the
bottom of the ocean, L is the length (in y) of the to-
pography, and

`

2ikxh̃(k) [ e h(x) dx (3)E
2`

is the Fourier transform of h(x). Because the topography
does not vary in y, the alongridge component of the
tidal velocity, V0 cos(v0t 1 x), is irrelevant.

In (2) we have further simplified Bell’s equation (5.6)
with two additional approximations. First, we have
made the hydrostatic approximation (and we have in-
cluded the effects of rotation, f 0 ± 0). Second, we have
taken Bell’s ‘‘quasistatic limit’’ so that the dominant
contribution to the conversion is into the fundamental
tidal frequency, v0. This approximation is discussed in
more detail in (14) below. Finally, by using NB in (2),
we have anticipated one of our results that with non-
uniform stratification, N(z), the best approximation (in
the WKB sense) is obtained by using NB in Bell’s results.
The conversion rate CBell in (2) provides the simplest
estimate of the tidal conversion: we will compare our
more elaborate estimates with CBell .

To highlight some recent estimates of tidal conver-
sion, we evaluate CBell using numbers that very roughly
correspond to the Hawaiian Ridge. The ridge is repre-
sented as a witch of Agnesi (Bell 1975a),

hmaxh(x) 5 , (4)
2 21 1 m x

where l [ 1/m is the width of the ridge. Then, evaluating
the Fourier transform h̃(k), we find from (2) that

2p f 02 2C 5 r U LN h 1 2 . (5)Bell 0 0 B max 2!8 v 0

There is a small surprise: CBell is independent of the
width l of the ridge. For the length of the ridge we take
L 5 1000 km and for the height hmax 5 4 km. Further,
take f 0 5 1024 s21 and NB 5 10 f 0 (i.e., 0.57 cph). For
the M2 tide, take U0 5 4 3 1022 m s21 and v0 5 2 f 0.

With hmax 5 4 km we are recklessly extrapolating
results based on the weak topography approximation
(15) far outside its range of validity. A tidal velocity of
4 cm s21 is typical of flow through shallow Hawaiian
passages. A cautious reader can make appropriate re-
ductions by noticing that CBell } . In any event,2 2h Umax 0

using the numbers in the previous paragraph,

C 5 8.6 GW.Bell (6)

This is the same order of magnitude as the 9.7 GW of
internal wave energy radiated from the Hawaiian Ridge
estimated by Merrifield and Holloway (2001) using the
Princeton Ocean Model. Using a two-layer model, Kang
et al. (2000) estimate 5.4 GW of M2 conversion into
the first baroclinic mode at Hawaii. And, with TOPEX/
Poseidon altimetry, Ray and Mitchum (1996) estimated
15 GW of conversion into the first baroclinic mode at
the Hawaiian Ridge. Finally, Munk (1996) estimated
that 200 GW of M2 conversion occurs globally along
50 000 km of submarine ridges.

In section 2 we formulate the tidal conversion prob-
lem and discuss the assumptions necessary to obtain a
tractable linear problem. In section 3 we solve this linear
problem by first projecting onto the vertical normal
modes of the stratification N(z); each modal amplitude
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satisfies the forced shallow water equations. We obtain
a solution of this system using a Green’s function. For-
tunately this integral representation is only a bridge: the
conversion into mode n, denoted by Cn, can be calcu-
lated without evaluating convolution integrals. This
evaluation gives the main result of this paper: formula
(37). In section 4 we discuss approximations and re-
ductions of (37). In section 5 we calculate the tidal
conversion produced by a one-dimensional ridge in an
ocean with finite depth H. We show that CBell in (5) is
accurate to about 10% provided that

1 l0a 5 (7)
2 lÏ(v / f ) 2 10 0

is greater than about 2. [In (7), l1 is the radius of de-
formation of the first baroclinic mode.] The effect of
finite depth is always to reduce C below the estimate
CBell and, if a is small, the converted energy is concen-
trated into low vertical modes. In section 6 we calculate
conversion rates for both axisymmetric and anisotropic
Gaussian topography. Section 7 is the conclusion that
includes an estimate for the global tidal conversion pro-
duced by seamounts.

2. Formulation

Consider an ocean of nonuniform finite depth with
the surface at z 5 0 so that 2H 1 h(x, y) , z , 0.
Here H is a constant and h(x, y) is the bumpy bottom.
The density is written as

0

21 2 21r 5 r 1 1 g N (z9) dz9 2 g b , (8)0 E1 2
z

where b(x, y, t) is the buoyancy of the wavy disturbance
and N(z) is the buoyancy frequency.

a. The problem

The problem is to solve

u 2 f y 1 p 5 0, y 1 f u 1 p 5 0,t 0 x t 0 y

2p 5 b, b 1 wN 5 0,z t

u 1 y 1 w 5 0, (9)x y z

with the boundary conditions

w(x, y, 0, t) 5 0, w(x, y, 2H, t) 5 U · =h; (10)

U(t) in the bottom boundary condition is the barotropic
tidal velocity in (1). In addition to the bottom boundary
condition, there is a radiation condition that as | x | →
6` there is only outward going energy. We will be more
specific about implementing this later.

b. Energetics

The energy conservation equation is

E 1 = ·J 5 0,t (11)

where the density E and flux J are

1
2 2 22 2E [ r (u 1 y 1 N b ), J 5 r p(u, y , w). (12)0 02

The object of our desire is the conversion rate

2C [ r ^p U&= · h d x, (13)0 E B

where pB [ p(x, y, 2H, t) is the bottom pressure and
angle brackets denote a phase average.

c. Three approximations

Three approximations have been made to obtain the
tractable linear problem in (9) and (10). First, because
v0/N K 1, we use the hydrostatic approximation. Sec-
ond, we assume that the tidal excursion distance, U0/
v0, is much less than the horizontal scale of the topog-
raphy l:

U /(v l) K 1.0 0 (14)

Inequality (14) ensures that the problem is linear and
that the advective effects of the barotropic tide are neg-
ligible; that is, terms such as Ubx are much smaller than
bt. Bell (1975a) does not make this approximation and
this is why Bell’s calculation contains all harmonics of
the tide such as 62v0 and so on. The simplifying as-
sumption in (14) is realistic. For instance, with a deep
tidal velocity U0 5 4 cm s21, the excursion of the M2

tide is only 280 m, which is small relative to nearly all
topographic features of interest.

The third and most problematic approximation in (9)
and (10) is that the topography is weak: this means that
the bottom boundary condition is applied at the flat
surface z 5 2H rather than at the actual position of the
bottom boundary z 5 2H 1 h. This weak topography
approximation is justified provided that

amplitude of the topography
K 1 (15)

vertical scale of the waves

and that topographic slopes are much less than the slope
of a tidal beam. These weak-topography approximations
can fail for realistic topographic features. For instance,
suppose that k21 5 l 5 10 km, v0 5 2 f 0, and N 5
20 f 0. Using the internal wave dispersion relation

2 2Ïv 2 f0 0
21 21m 5 k , (16)

N

we estimate that the vertical scale of the internal tide,
m21, is 870 m. Bathymetric excursions of this size can
occur over distances of 10 km so the parameter in (15)
could be of order unity.
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3. Solution

a. Vertical modes

We begin by projecting (9) and (10) onto the vertical
modes associated with the stratification N(z). These
functions are defined by the eigenproblem

2d an 22 21 c N a 5 0, a (0) 5 a (2H ) 5 0, (17)n n n n2dz

where the eigenvalue cn is the phase speed of mode n
and

cnl [ (18)n f0

is the radius of deformation of mode n. In addition to
an(z) we need the functions

dana9(z) [ , (19)n dz

which satisfy

d da9n22 22N 1 c a9 5 0,n n1 2dz dz

da9 da9n n(0) 5 (2H ) 5 0. (20)
dz dz

We take an to be dimensionless so that has dimensionsa9n
(length)21. The orthogonality conditions are

0 0

2 2a (z)a (z)N (z) dz 5 c a9(z)a9 (z) dzE n m n E n m

2H 2H

25 l f « d , (21)n 0 n mn

where «n is a dimensionless normalization constant as-
sociated with mode n.

b. Modal representation of the solution

The solution is represented as
`

(u, y , p) 5 l (u , y , p )a9(z) and (22)O n n n n n
n51

`

2 22(w, f N b) 5 (w , b )a (z). (23)O0 n n n
n51

The factors ln are included in these definitions so that
un has the same dimensions as u and similarly for the
other quantities. The vertically integrated energy density
is

01
2 2 22 2r (u 1 y 1 N b ) dz0 E2

2H

`1
2 2 22 25 r l « (u 1 y 1 f b ). (24)O0 n n n n 0 n2 n51

We project the equations of motion onto the vertical

normal modes by multiplying (9a,b,e) by and (9c,d)a9m
by am. We then integrate over (2H, 0) and uses modal
orthogonality. Because one cannot exchange differen-
tiation and summation in the series (23) for w, wz ina9m
the continuity equation (9e) is integrated by parts in the
usual Galerkin fashion. The term that falls outside the
integrals leads to a forcing function proportional to w(x,
y, 2H, t) in the modal equations. We find the following
forced shallow-water equations for the modal ampli-
tudes

u 2 f y 1 p 5 0, y 1 f u 1 p 5 0,nt 0 n nx nt 0 n ny

2p 1 l b 5 0, b 1 f w 5 0,n n n nt 0 n

2 2p 1 c (u 1 y ) 5 f l § U · =h, (25)nt n nx ny 0 n n

where the dimensionless constant §n is

21§ [ « l a9(2H).n n n n (26)

The modal equations (25) have a conservation law

1
2 2 22 2[u 1 y 1 c p ] 1 = · [(u , y )p ]n n n n t n n n2

215 § l p U · =h. (27)n n n

Comparing (27) with (24), we identify the modal con-
version rate as

2C 5 r « § ^p U& · =h d x (watts). (28)n 0 n n E n

That is, the total conversion is simply

`

C 5 C . (29)O n
n51

c. The Klein–Gordon equation and its solution

With some algebra we can reduce (25) to a forced
Klein–Gordon equation

2 2 2 2 2 2 2(] 1 f )p 2 c ¹ p 5 f l § (] 1 f )U · =h. (30)t 0 nt n nt 0 n n t 0

Next, we write

2iv t iv t0 0p 5 p̂ e 1 p̂*e and (31)n n n

2iv t iv tˆ ˆ0 0U 5 Ue 1 Ue . (32)

Notice that from (1), Û 5 ½[U0, e2ixV0]. Putting (31)
and (32) into (30) gives

2f 02 2 ˆ¹ p̂ 1 k p̂ 5 ik § f 1 2 U · =h, (33)n n n n n 0 2! v 0

where

2 2 2Ïv 2 f v f 10 0 0 0k [ 5 1 2 (34)n 2!c f v l .n 0 0 n

Equation (33) is solved using a Green’s function
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2f 0 2ˆp̂ (x) 5 ik § f 1 2 U · G(k s)=9h(x9) d x9,n n n 0 E n2! v 0

(35)

where G(z) [ [Y0(z) 2 iJ0(z)]/4 and s [ | x 2 x9 | . We
use the combination J0 1 iY0 in the Green’s function
to take care of the radiation condition.

Putting (35) into the expression for Cn in (28) gives

21 f 0 2 2 2 2 2C 5 r f 1 2 k « § J (k s)[U ] ] 1 U V cosx(] ] 1 ] ] ) 1 V ] ] ]h(x)h(x9) d x d x9. (36)n 0 0 n n n EE 0 n 0 x x9 0 0 x y9 x9 y 0 y y92!8 v 0

The result above entails a fourfold integration over both
x 5 (x, y) and x9 5 (x9, y9). However the convolution
involving J0(kns) indicates that we can simplify these
integrals by going into Fourier space. The result is par-
ticularly simple because the Fourier transform (r → k)
takes J0(knr) → 2pd(k 2 kn)/kn. This d(k 2 kn) enables
integration in the Fourier space.

Making the simplifications outlined above, (36) be-
comes

21 f 02 2 2 2C 5 r f (U 1 V ) 1 2 « § kn 0 0 0 0 n n n2!16 v 0

3 J(f)T (k , f) df (watts), (37)nR
where «n, §n, and kn are defined in (21), (26), and (34),
respectively. Further in (37),

k
2T (k, f) [ |h̃(k, l)| , (38)

2p

where the two-dimensional Fourier transform is

2ikx2ilyh̃(k, l) [ e h(x, y) dx dy, (39)EE
and (k, l) 5 k(cosf, sinf). The tidal ellipse in (1) affects
Cn in (37) through the function

2 2 2U 2 V 2U cosx0 0 0J(f) [ 1 1 cos2f 1 sin2f. (40)
2 2 2 2U 1 V U 1 V0 0 0 0

Notice that Parseval’s theorem is

dk dl
2 2h̃ (x, y) dx dy 5 |h(k, l)|EE EE 2(2p)

` df
5 T (k, f) dk (41)E R 2p.0

This equality implies that in the case of isotropic random
topography, the ensemble average of T equals the total
area of the domain times the power spectral density of
the topography.

4. Special cases and approximations

Equation (37) for the conversion rate into vertical
mode number n is the most important result in this paper.
The buoyancy profile N(z) determines the wavenumber
kn in (34) and also the two dimensionless constants «n

and §n. Using the WKB approximation for the vertical
normal modes we can obtain approximate expressions
for these three quantities and rewrite (37) in a form that
can be more easily interpreted in physical terms.

a. The WKB approximation

The WKB approximation is most accurate for the
higher modes, but it is not misleading even for the first
mode. Further, if Nz 5 0, then the WKB formulas below
are exact for all modes. In any event, the approximation
is

zN np
a (z) ø sin N(z9) dz9 , (42)n E1 2!N(z) HN

2H

where the average buoyancy frequency is [ H21N
N(z9) dz9 and the eigenvalues are cn 5 f 0ln ø H/0# N2H

np so that

np
2 2k ø Ïv 2 f . (43)n 0 0 NH

The dimensionless constants are

np N 2 NB« ø , § ø , (44)n n !2 f np N0

where NB [ N(2H) is the buoyancy frequency at the
bottom.

Putting these approximations into (37) gives the
WKB approximation to the conversion rate

2r f0 02 2C ø N (U 1 V ) 1 2 k dkn B 0 0 n2!8p v 0

3 J(f)T (k , f) df, (45)nR
where

p
2 2dk [ Ïv 2 f , (46)0 0 NH
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and kn 5 ndk. The notation in (46) is suggested because
dk is the spacing between the horizontal wavenumbers
driven by the tidal forcing. The WKB approximation
(45) indicates that the only properties of N(z) which
strongly affect tidal conversion are NB and .N

b. The limit of infinite depth, H → `

If H → `, then normal modes are a needlessly cum-
bersome representation of the solution. The conversion
rate Cn simplifies in this limit because H appears in (45)
only through dk } H21 and kn 5 ndk. When dk is small,
the sum over normal modes, obtained by putting (45)
into (29), can be approximated by an integral with kn

→ k and dk → dk. Specifically,

2r f0 02 2lim C 5 N (U 1 V ) 1 2B 0 0 2!8p vH→` 0

`

3 J(f)kT (k, f) df dk. (47)E R
0

We will give a detailed assessment of the accuracy of
the integral approximation (47) in the next section. The
main conclusion is that (47) approximates the sum in
(29) provided that the horizontal scale of the topography
is much less than 1/dk.

In his equation (6) Bell (1975b) gives an expression
for C that is equivalent to (47).1 Bell uses the special
coordinate system in which the axes of the tidal ellipse
coincide with the coordinate axes. In our formulation
the angle x in (1) and (40) allows for a general orien-
tation of the tidal ellipse relative to the coordinate sys-
tem. To specialize (47) to the coordinate of the tidal
ellipse notice that

2 2 2 Tk (U 1 V )J 5 2k Mk,0 0 (48)

where k [ [k, l]T 5 k[cosf, sinf]T and M is the matrix

2U U V cosx0 0 0M [ . (49)
2[ ]U V cosx V0 0 0

Since M is symmetric, it can be represented as

21M 5 RJR , (50)

where R the rotation matrix whose columns are the ei-
genvectors of M and J is the diagonal matrix

2U 01J 5 , (51)
2[ ]0 U2

with

1 Bell refers to his P(k, l) as the ‘‘spectrum of the bottom topog-
raphy,’’ whereas actually P 5 | h̃ | 2—see the discussion surrounding
(41). Because of (14), Bell’s parameter b is small. Thus Bell’s sums
over n are simplified by keeping only the first term and using J1(b)
ø b/2.

1
2 2 2 2 2 2 2 2U 5 U 1 V 6 Ï(U 1 V ) 1 4U V cosx .1 26 0 0 0 0 0 02

(52)

The diagonal entries of J are the eigenvalues of M.
Equivalently, U1 and U2 are the major and minor axes
of the tidal ellipse.

Now change the variables of integration in (47) to
21k9 5 R k (53)

Since R is a rotation matrix, the Jacobian of the trans-
formation k → k9 is unity and k 5 . In terms2 2Ïk9 1 l9
of k9 5 [k9, l9]T, the integral on the right-hand side of
(47) becomes

2r f0 0C 5 N 1 2B2 2!8p v 0

` ` 2 2 2 2U k9 1 U l91 2 23 |h̃(k9, l9)| dk9 dl9, (54)E E
2 2Ïk9 1 l92` 2`

where (38) has been used to replace T in favor of | h̃ | 2.
Equation (54) is equivalent to Eq. (6) in Bell (1975b).

c. The one-dimensional limit

Starting from the WKB approximation in (45) we can
also take the limit in which the topography becomes
almost one-dimensional. That is, suppose that

h(x, y) 5 F (y)h (x),L 1 (55)

where FL(y) 5 1 if 2L/2 , y , L/2 and FL(y) 5 0
otherwise. The function h1(x) allows for arbitrary var-
iation in x of the topography. As L → `, the solution
will reduce to the one-dimensional special case. In this
limit the main contribution to the f integral in (45)
comes from the neighborhood of f 5 0 and f 5 p,
where

22U0J ø ,
2 2U 1 V0 0

2 lL
22 2T (k , f) ø l sin k h̃ (k )h̃*(k ). (56)n n 1 n 1 n1 2p 2

Evaluating the simplified integrals gives the leading or-
der approximation

2f dk02C ø r LN U 1 2 k h̃ (k )h̃*(k ) . (57)n 0 B 0 n 1 n 1 n2! v 2p0

We have verified that (57) is also obtained if one makes
the ab initio idealization that the topography depends
only on x and proceeds directly from (25).

d. Recovery of Bell’s formula

Bell’s (1975a) result in (2) assumes that H → ` and
that the topography varies only in x. We recover this
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FIG. 2. Three model topographic profiles. The exponential model, h } exp(2 | x | /l ), has a
discontinuous derivative at X [ x/l 5 0.

TABLE 1. Results for three model topographies: the Gaussian, the witch, and (in the final row) the exponential. We use the notation X 5
x/l, K 5 kl, and n9 5 n/a. The nondimensional constant D appears in (59) and the sum S(a) is the reduction factor in (58).

h (x)/hmax h̃ (k)/hmax D S(a)

exp(2X 2/2)
(1 1 X 2)21

exp(2|X|)

Ï2p l exp(2K 2/2)
p l exp(2|K|)
2l/(1 1 K 2)

1/2
p /8
p21

2a21 S n9 exp(2n92)`
n51

4a21 S n9 exp(22n9)`
n51

2a21 S n9/(1 1 n92)2`
n51

doubly special case by starting with either (47) or (57)
and making the appropriate reductions. The easiest path
starts by putting (57) into the modal sum (29) and then
taking H → ` (equivalently dk → 0) to obtain an in-
tegral over k.

5. Tidal conversion by a ridge

In this section we use (57) to estimate the tidal con-
version by a one-dimensional ridge in an ocean of finite
depth H. We make comparisons between the three to-
pographic profiles illustrated in Fig. 2. All of the profiles
are characterized by a maximum height hmax and a hor-
izontal scale l 5 1/m.

a. Summary

We write the conversion rate of a ridge, obtained from
the modal sum in (29) and the WKB approximation to
Cn in (57), as

NH
C 5 C S . (58)Bell 1 22 2plÏv 2 f0 0

In (58),

2f 02 2C 5 DLr U N 1 2 h , (59)Bell 0 0 B max2! v 0

where D is a numerical constant that depends only on
the profile (see the third column of Table 1). CBell , orig-
inally defined in (2), is the conversion rate with H 5
`. The reduction factor S(a) in (58) increases mono-
tonically from S(0) 5 0 to S(`) 5 1. Explicit expres-

sions for S(a) are given in the final column of Table 1
and these three examples are graphed in Fig. 3.

b. Discussion of the tidal conversion by a finite-depth
ridge

Both l and H appear in (58) via the nondimensional
combination

NHm 1
a [ 5 . (60)

2 2 ldkpÏv 2 f0 0

The discussion surrounding (47) emphasizes that, as H
→ `, the sum over discrete vertical normal modes can
be approximated by a modal continuum. The function
S(a) provides a quantitative indication of the accuracy
or rate of convergence of this approximation. Specifi-
cally, if a 5 2 then CBell is within 10% of C for all
profiles in Fig. 2. Thus ‘‘large a’’ means a * 2.

Because a is an important nondimensional parameter
we offer several physical interpretations. The most fun-
damental is suggested by dk 5 1/(al): the interval be-
tween the horizontal wavenumbers excited by the tidal
forcing is controlled by a and the topographic length
scale l. The limit of a modal continuum is approached
by making a } H large, or alternatively by reducing
the horizontal scale l of the topography. We illustrate
this point by calculating the fraction of the total con-
version C contained in the first n vertical modes:

n `

F (a) [ C C . (61)O On m m@m51 m51

Figure 4 shows Fn(a) for the witch profile; there is
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FIG. 3. The sum S(a) in (58) for the witch of Agnesi, the exponential and Gaussian profiles. The
analytic expressions for S(a) are in the final column of Table 1. (top) The approach to the H → `
limit, S(`) 5 1; (bottom) S(a) with 0 , a , 1/2.

significant projection into the vertical modes with n $
3 only if a is greater than about 2.

To roughly estimate the size of a, notice that a ridge
of width l 5 m21 will force internal tides with horizontal
wavenumbers k ; m. Then, using the internal wave
dispersion relation, we can interpret a as the ratio

ocean depth
a ; . (62)

vertical wavelength of the internal tide

Since the deformation radius of the first mode is l1 ø
H/p f 0, we can also writeN

1 l1a 5 . (63)
2 lÏ(v / f ) 2 10 0

With a typical midlatitude deformation radius of l1 5
30 km, and v0 5 2 f 0, we have a ; 17/l where the
ridge width l is in units of kilometers. Thus, from Fig.
3, a ridge of width 17 km will have a reduction factor
of S(1) ; 0.8. With a 5 1 the reduction factor is in-
sensitive to changes in the topographic profile. However,
if the ridge width is doubled to 34 km, then a ; 1/2
and the details of the topographic profile make large
changes in S (see the bottom panel of Fig. 3). The main
point is that the rise of S at small a is very sensitive to
the high wavenumber structure of h̃(k): the profiles with
rapid decay of h̃(k) at large k (the Gaussian and the
witch) have very small reduction factors if a , 0.4.

c. The radiated waves

To visualize the solution we need an explicit solution
of (33). The exponential topography in the final row of
Table 1 is convenient because the solution is

h(x) i mhmax ik zx znp (x) 5 2 e . (64)n 2 2 2 2m 1 k k m 1 kn n n

The first term on the right-hand side of (64) is a forced
response trapped over the ridge and the second term is
the radiated wave. Figure 5 shows the buoyancy field
for a 5 0.1 and a 5 1. As a increases for fixed H and
l, the horizontal scale of the internal tide increases.

6. Gaussian topography

The Gaussian seamount
2 2 22(x 1y )/2ah(x, y) 5 h emax (65)

is a simple example of a two-dimensional topography.
In the case of a very deep ocean we can use the WKB
formula in (47) to calculate the conversion rate. The
result is

21 f 03/2 2 2 2C 5 p r N a(U 1 V ) 1 2 h . (66)axi 0 B 0 0 max2!8 v 0

In the conclusion we use (66) to estimate the conversion
produced by the global inventory of over 1.4 million
seamounts.



1562 VOLUME 32J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 4. Fn (a), defined in (61) for the witch profile; Fn is the fraction of converted energy in
the first n vertical modes. When a , 1 the first two vertical modes contain nearly all of the
converted tidal energy.

a. Anisotropic topography

We now move to the case of general two-dimensional
Gaussian topography, given by

2 2 2 22m x /22n y /2h(x, y) 5 h e .max (67)

We have aligned the topography with the x and y axes;
an arbitrary angle between the tidal ellipse and the major
axis of the topography can be obtained by adjusting the

phase x in (1). We characterize the scale of the topog-
raphy using the equivalent radius

21/2a [ (mn) (68)

and the anisotropy with

b [ n/m. (69)

Then, again using the WKB approximation, the total
conversion rate is, from (29) and (45),

`2 21 f n0 12 2 2 2l 2 2nC 5 pr N (U 1 V ) 1 2 h a e [I (l ) 1 gI (l )], (70)O0 B 0 0 max 0 n 1 n2 3!2 v an510

where Im is a modified Bessel function. In (70), and
throughout this section, we change the definition of a
to

NH 1
a [ 5 , (71)

2 2 adkpaÏv 2 f0 0

where a is the equivalent radius defined in (68). Ad-
ditionally in (70)

21 2 21 (b 6 b) (U 2 V )0 06 2l [ n , g [ . (72)n 2 2 22 a (U 1 V )0 0

Using Caxi in (66) we rewrite (70) as

C 5 C [R (a, b) 1 gR (a, b)],axi 0 1 (73)

where, with m 5 0 and 1,
`4 12 2l 2nR (a, b) [ n e I (l ). (74)Om m n

3 n51a Ïp

The square bracket on the right-hand side of (73) is the
ratio of the conversion C to the conversion produced by
an equivalent axisymmetric seamount in an ocean with
H 5 `. This ratio depends on the three nondimensional
parameters a, b, and g.

From the definitions of in (72) and the parity of6ln

Im it follows that

mR (a, 1/b) 5 (21) R (a, b).m m (75)

In physical terms, the identity above arises because the
correspondence of the x direction to the major or minor
axis of the elliptical topography is an accident of no-
tation. Equation (75) is useful because one can simplify
the task of calculating and plotting Rm by limiting at-
tention to b # 1.

b. The infinite depth limit, a 5 `

The large-a limits of R0 and R1, corresponding to an
infinitely deep ocean, are obtained once again by con-
verting the sums in (74) into integrals over k 5 n/(aa).
Putting the integral representation of the modified Bes-
sel function Im [see formula 8.431.5 in Gradshteyn and
Ryzhik (2000, p. 907)] into this expression, and then
reversing the order of integration leads to simplification.
The result is
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FIG. 5. Buoyancy field for the exponential profile in the final row of Table 1: (top) a 5 0.1 and
(bottom) a 5 1. When a is small the surface reflected waves interact with topography and the resulting
destructive interference reduces the conversion rate. This is a linear solution and the arbitrary amplitude
of b is large in order to make the radiating internal tide visible.

2
2R (`, b) 5 E(Ï1 2 b ) and (76)0

pÏb

22 1 1 b
2R (`, b) 5 E(Ï1 2 b )1 2[1 2 bpÏb

22b
22 K(Ï1 2 b ) , (77)

2 ]1 2 b

where K(k) and E(k) are the complete elliptic integrals
of the first and second kinds, respectively, with param-
eter k 5 . (For definitions of K and E, see2Ï1 2 b
section 8.11 of Gradshteyn and Ryzhik; notice that
Gradshteyn and Ryzhik’s k9 [ is equal to our2Ï1 2 k
b.) The functions R0(`, b) and R1(`, b) are graphed in
Fig. 6.

As an example, we follow Holloway and Merrifield
(1999) and consider the conversion produced by an
elongated Gaussian with minor (x) axis m21 5 16 km
and major (y) axis 3m21. In other words, b 5 1/3 and
the equivalent radius is a 5 3 16 ø 27.7 km. FromÏ3
(76) and (77) we compute R0(`, 1/3) 5 1.23 and R1(`,
1/3) 5 0.84. Thus the conversion of the elongated to-
pography is between R0 2 R1 5 0.39 and R0 1 R1 5
2.07 that of the equivalent axisymmetric topography.
The smaller figure applies if the tide is linearly polarized
along the major axis of the topography (U0 5 0 and g
5 21) while the larger number applies if the tide is

linearly polarized along minor axis (V0 5 0 and g 5
1). Notice that Holloway and Merrifield compare the
conversion of the elongated topography to that of a cir-
cular seamount with a radius equal to the minor axis of
the ellipse, that is, a seamount with radius a9 5 16 km.
In these terms the conversion is between 0.68 and 3.58
times that of the ‘‘minor seamount.’’

Figure 7 shows C (`, b, g)/Caxi (this ratio corresponds
to D of the previous section). The conversion rate drops
to zero as g → 21 and b → 0; this is a meriodionally
oriented ridge with a linearly polarized meridional tide.
The conversion rate increases to its maximum value for
g 5 21 as b increases, which corresponds to the one-
dimensional problem of the previous section. The sym-
metry about the origin corresponds to x ↔ y, U0 ↔ V0,
and m ↔ n.

c. Finite-depth effects

The approach of C to its limiting value as a → ` is
very similar to that exhibited by the functions S(a) of
the previous section. The behavior of R0 and R0 2 R1

(the results for R0 1 R1 are the same under b ↔ b21)
is shown in Fig. 8. These two curves show the generic
behavior of C 5 Caxi(R0 1 gR1), but the prefactor has
been left out to show the different limiting values de-
pending on the value of b.

For large infinite-depth conversion rates (e.g., large
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FIG. 6. (top) The functions R0(`, b) and R1(`, b) in (76) and (77); (bottom) the linear
combination R0 1 gR1 in (73) lies between R0 2 R1 and R0 1 R1.

FIG. 7. The a 5 ` limit of C/Caxi computed using (76) and (77).
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FIG. 8. Behavior of R0 and R0 2 R1 as functions of a for b 5 0.1, 0.2, 0.5, 1, 2, 5, and 10. (top)
The curves for the b and b21 are the same, and the curve with the smallest limit as a → ` (namely,
1) corresponds to b 5 1; (bottom) the limiting value of R0 2 R1 increases as b decreases.

b and g 5 21), the growth with a is rapid. Conversely,
for small infinite-depth conversion rates, the growth is
slow. The overall behavior is similar to that for one-
dimensional topography except in cases of weak con-
version, when the tide is aligned with the major axis of
the topography.

7. Conclusions

The analytic estimates of conversion in this paper are
hostage to the small-topography assumption in (15).
This parametric restriction enables us to apply the bot-
tom boundary condition at a flat surface and so obtain
a tractable problem. Recent results of Balmforth et al.
(2001, submitted to J. Phys. Oceanogr.) indicate that
the small-topography approximation gives only a slight
underestimate of the conversion, even if the topographic
slopes approach the critical condition. For example,
Balmforth et al. consider a Gaussian ridge with critical
slope and H 5 `. In this case the true conversion is
only 14% greater than one would estimate using the
small-topography approximation. These results give us
some confidence that the small-topography approxi-
mation is quantitatively accurate provided that the to-
pographic slope is modestly less than the ray slopes.
Encouraged by these results we conclude by using the
expression for the conversion of an axisymmetric sea-
mount in (66) to estimate the global conversion pro-
duced by seamounts.

Jordan et al. (1983) and Smith and Jordan (1988)
constructed a parameterized model of seamount statis-
tics in the Pacific. We adapt their model and use (66)
to make a rough estimate of the tidal conversion pro-
duced by an ensemble of seamounts. According to Jor-
dan et al., seamounts cover about 6% of the seafloor
and the density of seamounts is (4 6 1.1) 3 1029 m22.
In other words, there are about 4000 seamounts per 106

km2. The radii of the seamount population has an ex-
ponential probability density function

21P (a) 5 a exp(2a/a), (78)

where ø 1.6 km is the average radius of the popu-a
lation. As a rule of thumb, the height and radius of a
seamount are related by hmax ø a/5.

Using the numbers above we consider an ‘‘average’’
seamount with a radius of 1.6 km and a height of 320
m. To use (66) we further suppose that f 0 5 1024 s21,
v0 5 2 f 0 and that the abyssal buoyancy frequency is
NB 5 5 f 0 (that is, 0.29 cph). For the tidal currents we
take U0 5 V0 5 1022 m s21. Putting these numbers into
(66) we get for the average seamount

4C ø 10 W.axi (79)

In other words, the average seamount produces about
100 lightbulbs of energy.

To calculate the total tidal conversion of the seamount
population we use the rule of thumb suggested by Jordan
et al. (1983) that hmax ø a/5 so that Caxi } a3. This means
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that the larger seamounts make a greater contribution
to the conversion. Indeed, since the function x3 exp(2x)
peaks at x 5 3, it is the seamounts with a 5 3 thata
make the largest contribution to the total conversion.
And, since

`

33a P (a) da 5 6a , (80)E
0

the total conversion of the population is actually 6N axi ,C
where N is the total number of seamounts. Considering
a square of seafloor 1000 km on a side (containing N
5 4000 seamounts), the total conversion is then

1
C ø GW. (81)sqr 4

This is small, but not entirely negligible. For instance,
using altimetry Ray and Mitchum (1996) estimate 15
GW of conversion into the first baroclinic mode by the
Hawaiian Ridge. And Munk (1997) estimated that 50
000 km of submarine ridges produce 200 GW of M2

conversion. Thus it takes 60 of these 1000 km 3 1000
km squares to equal Ray and Mitchum’s estimate for
Hawaii. But there are 360 squares paving the global
seafloor. Thus a blithe extrapolation of (81) would in-
dicate a seamount conversion equivalent to 6 of Ray
and Mitchum’s Hawaiis or 45% of Munk’s submarine
ridges. This implies that rather small topographic fea-
tures might make a palpable contribution to the total
abyssal conversion. [Notice that 3 5 4.8 km is belowa
the resolution of Smith and Sandwell’s (1997) satellite
altimetry.]

Because of the 5-km scale of these seamounts finite-
depth corrections are unimportant. That is, a in (71) is
large. We can also make an a posteriori assessment of
the small-topography approximation. A Gaussian sea-
mount with radius a and height hmax 5 a/5 has a max-
imum slope hmax/ a ; 0.12. On the other hand, theÏe
slope of a radiated tidal beam is /N ; 0.35.2 2Ïv 2 f0 0

The ratio of topographic slope to ray slope is thus 1/3,
which is small enough that the assumption of weak to-
pography is good.
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